Photoswitching-Free FRAP Analysis with a Genetically Encoded Fluorescent Tag

نویسندگان

  • Tatsuya Morisaki
  • James G. McNally
  • Mohammed Akaaboune
چکیده

Fluorescence recovery after photobleaching (FRAP) is a widely used imaging technique for measuring protein dynamics in live cells that has provided many important biological insights. Although FRAP presumes that the conversion of a fluorophore from a bright to a dark state is irreversible, GFP as well as other genetically encoded fluorescent proteins now in common use can also exhibit a reversible conversion known as photoswitching. Various studies have shown how photoswitching can cause at least four different artifacts in FRAP, leading to false conclusions about various biological phenomena, including the erroneous identification of anomalous diffusion or the overestimation of the freely diffusible fraction of a cellular protein. Unfortunately, identifying and then correcting these artifacts is difficult. Here we report a new characteristic of an organic fluorophore tetramethylrhodamine bound to the HaloTag protein (TMR-HaloTag), which like GFP can be genetically encoded, but which directly and simply overcomes the artifacts caused by photoswitching in FRAP. We show that TMR exhibits virtually no photoswitching in live cells under typical imaging conditions for FRAP. We also demonstrate that TMR eliminates all of the four reported photoswitching artifacts in FRAP. Finally, we apply this photoswitching-free FRAP with TMR to show that the chromatin decondensation following UV irradiation does not involve loss of nucleosomes from the damaged DNA. In sum, we demonstrate that the TMR Halo label provides a genetically encoded fluorescent tag very well suited for accurate FRAP experiments.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A FRET-facilitated photoswitching using an orange fluorescent protein with the fast photoconversion kinetics.

Fluorescent proteins photoswitchable with noncytotoxic light irradiation and spectrally distinct from multiple available photoconvertible green-to-red probes are in high demand. We have developed a monomeric fluorescent protein, called PSmOrange2, which is photoswitchable with blue light from an orange (ex./em. at 546 nm/561 nm) to a far-red (ex./em. at 619 nm/651 nm) form. Compared to another ...

متن کامل

Protein-flexibility mediated coupling between photoswitching kinetics and surrounding viscosity of a photochromic fluorescent protein.

Recent advances in fluorescent proteins (FPs) have generated a remarkable family of optical highlighters with special light responses. Among them, Dronpa exhibits a unique capability of reversible light-regulated on-off switching. However, the environmental dependence of this photochromism is largely unexplored. Herein we report that the photoswitching kinetics of the chromophore inside Dronpa ...

متن کامل

Deciphering Structural Photophysics of Fluorescent Proteins by Kinetic Crystallography

Because they enable labeling of biological samples in a genetically-encoded manner, Fluorescent Proteins (FPs) have revolutionized life sciences. Photo-transformable fluorescent proteins (PTFPs), in particular, recently attracted wide interest, as their fluorescence state can be actively modulated by light, a property central to the emergence of super-resolution microscopy. PTFPs, however, exhi...

متن کامل

Self-labelling enzymes as universal tags for fluorescence microscopy, super-resolution microscopy and electron microscopy

Research in cell biology demands advanced microscopy techniques such as confocal fluorescence microscopy (FM), super-resolution microscopy (SRM) and transmission electron microscopy (TEM). Correlative light and electron microscopy (CLEM) is an approach to combine data on the dynamics of proteins or protein complexes in living cells with the ultrastructural details in the low nanometre scale. To...

متن کامل

In vivo photoswitchable flow cytometry for direct tracking of single circulating tumor cells.

Photoswitchable fluorescent proteins (PSFPs) that change their color in response to light have led to breakthroughs in studying static cells. However, using PSFPs to study cells in dynamic conditions is challenging. Here we introduce a method for in vivo ultrafast photoswitching of PSFPs that provides labeling and tracking of single circulating cells. Using in vivo multicolor flow cytometry, th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014